Performance Optimization of the Magneto-hydrodynamic Generator at the Scramjet Inlet

Nilesh V. Kulkarni

Advisors:

Prof. Minh Q. Phan Dartmouth College

Prof. Robert F. Stengel Princeton University

Joint University Program Meeting Cambridge, MA 17th October - 18th October 2002

Presentation Outline

- The Magneto-hydrodynamic (MHD) generator
- The role of control
- MHD generator system
- Cost-to-go design for optimal control using neural networks
- Results
- Conclusions

Magneto-Hydrodynamic (MHD) Generator at the Inlet

Schematic of the MHD Generator

MHD Generator System

- Assumptions
 - One-dimensional steady state flow
 - Inviscid flow
 - No reactive chemistry
 - Low Magnetic Reynolds number
- *x-t* equivalence

Flow Equations

Continuity Equation

$$\frac{d(\rho uA)}{dx} = 0$$

x - Coordinate along the channel

P - Fluid density

u - Fluid velocity

A - Channel cross-section area

Force Equation

$$\rho u \, \frac{du}{dx} + \frac{dP}{dx} = -(1-k)\sigma u B^2$$

P - Fluid pressure

k - Load factor

 σ - Fluid conductivity

B - Magnetic field

Flow Equations...

Energy Equation

$$\rho u \frac{d(\gamma \varepsilon + \frac{u^2}{2})}{dx} = -k(1-k)\sigma u^2 B^2 + Q_{\beta}$$

 ε - Fluid internal energy

 Q_{β} - Energy deposited by the e-beam

 Continuity Equation for the electron number density

$$\frac{d(n_e u)}{dx} = \frac{2j_b \varepsilon_b}{eY_i Z} - \beta n_e^2$$

 n_e - Electron number density

 j_b - Electron beam current

 ε_b - E-beam energy

Z - Channel width

Y - Ionization potential

Performance Characterization

$$J = p_{1} \left[T(x_{f}) - T_{e} \right]^{2} + p_{2} \left[M(x_{f}) - M_{e} \right]^{2} + \int_{0}^{x_{f}} \left[\frac{q_{1}}{\rho u A} \left[Q_{\beta} A - k(1 - k) \sigma u^{2} B^{2} A \right] + \right]_{0}^{x_{f}} dx$$

$$+ \int_{0}^{x_{f}} \left[\frac{q_{1}}{\rho u A} \left[Q_{\beta} A - k(1 - k) \sigma u^{2} B^{2} A \right] + \right]_{0}^{x_{f}} dx$$

- Attaining prescribed values of flow variables at the channel exit (Mach number, Temperature)
- Maximizing the net energy extracted which is the difference between the energy extracted and the energy spent on the e-beam ionization
- Minimizing adverse pressure gradients
- Minimizing the entropy rise in the channel
- Minimizing the use of excessive electron beam current

The Predictive Control Based Approach for Optimal Control

- Features of our optimal controller design technique
 - Works for both linear and nonlinear systems
 - Data-based
 - Finite horizon, end-point optimal control problem
 - Equivalent to time (position) varying system dynamics

- [1] Kulkarni, N.V. and Phan, M.Q., "Data-Based Cost-To-Go Design for Optimal Control," *AIAA Paper* 2002-4668, *AIAA Guidance, Navigation and Control Conference*, August 2002.
- [2] Kulkarni, N.V. and Phan, M.Q., "A Neural Networks Based Design of Optimal Controllers for Nonlinear Systems," *AIAA Paper* 2002-4664, *AIAA Guidance, Navigation and Control Conference*, August 2002.

Optimal Control Using Neural Networks

Optimal control architecture

Formulation of the Control Architecture: Cost Function Approximator

- Collecting system data through simulation or a physical model
- Parameterizing single step ahead and multi-step ahead models called subnets using neural networks
- Training the subnets using system data
- Formulating a fixed layer neural network that take the subnet outputs and calculate the cost-to-go function or the cumulative cost function.

Using Subnets to Build the Cost Function

Network

- Continuously spaced e-beam windows each having a length of 0.5 cm
- Subnet 1 chosen to correspond to the system dynamics between a group of 4 e-beam windows
- Length of the channel = 1 m
- Need subnets up to order 50

Physical picture describing Subnet 1

Subnet *m*, inputs and outputs.

Cost Function Network

<u>Implementation of the Cost function network of order *r* = 10, using trained subnets of order 1 through 5</u>

Formulation of the Control Architecture: Neural Network Controller

Neural Network Controller Training

- Gradient of J with respect to the control inputs u(1), ..., u(50) is calculated using back-propagation through the CGA neural network.
- These gradients can be further back-propagated through the neural network controller to get, $(W_{nn}$ weights of the network) ∂W_{nn}
- Neural network controller is trained so that

$$\frac{\partial J}{\partial W_{nn}} \rightarrow 0$$

Training Results for Subnet 10

Testing Subnet 10, ' ∇ ' - Ouput value given by subnet 10, 'o' - Error between the subnet 10 output and the actual value given by the simulation

Case 1: Maximizing the Net Power Extracted

Cost function:

$$J = p_{1} \left[T(x_{f}) - T_{e} \right]^{2} + p_{2} \left[M(x_{f}) - M_{e} \right]^{2} + \sum_{i=1}^{50} \left[\frac{q_{1}}{\rho(i)u(i)A(i)} \left[Q_{\beta}(i)A(i) - k(1-k)\sigma(i)u(i)^{2}B^{2}A(i) \right] + \sum_{i=1}^{50} \left[\frac{q_{1}}{\rho(i)u(i)A(i)} \left[Q_{\beta}(i)A(i) - k(1-k)\sigma(i)u(i)^{2}B^{2}A(i) \right] + \int_{i=1}^{50} \left[q_{2}(i)P(i) + q_{3}[S(i) - S(i-1)]^{2} + r_{1}j_{b}(i-1)^{2} \right] dx$$

p_1	p_2	q_1	q_2	q_3	r_1
0	0	0.0001	0	0	0.005

Power input-output for the three control profiles

h=30 km, M=8	Power Spent	Power Extracted	Net Power Extracted
Constant current (50 A/m²)	300 kW	1.918 MW	1.618 MW
Random current	121 kW	1.381 MW	1.260 MW
Optimal Profile	174 kW	1.717 MW	1.544 MW

Electron beam current profile \square - constant e-beam current (50 A/m²), O- random profile, Δ - neural network controller.

Case 2: Imposing Pressure Profile Penalty

Choice of the weighting parameters in the cost function:

p_1	p_2	q_1	q_3	r_1
0	0	0.0001	0	0

$$q_2(x) = 0; \quad 0 < x < 0.9$$

$$q_2(x) = 200 x^4; \quad 0.9 < x < 1$$

E-beam current profile and the resulting pressure distribution along the channel, \Box - without pressure weighting, Δ - with pressure weighting.

Case 3: Prescribing an Exit Mach Number

Choice of the weighting parameters in the cost function:

p_1	p_2	q_1	q_2	q_3	r_1
0	100	10^{-6}	0	0	0

Mach number profiles for different free stream conditions

Prescribed Exit Mach Number

$$M_e = 4.5$$

Free Stream Altitude	Free Stream Mach	Exit Mach number	Legend in the plots
30 km	number 8	4.41	Δ
31.5 km	7.6	4.58	
28.5 km	8.4	4.52	0
31.5 km	8.4	4.51	∇
28.5 km	7.6	4.51	*

- Formulation of the problem of performance optimization of the MHD Generator as an optimal control problem
- Implementation of the cost-to-go design approach for optimal control using neural networks
- Data-based approach
- Successful implementation for different performance criteria
- Future work to incorporate sensors along the channel to further optimize the system performance